Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 416: 110676, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507974

RESUMO

Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions (3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm formation (3.04-6.05 log CFU cm-2) than the mutant strains (2.30-5.48 log CFU cm-2). For both applications, the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58-2.95 log reductions at pH 6.5, with mutants being more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log reductions (1.58-2.90) than the ones in TSB (2.02-3.61). These findings provide valuable insights into the impact of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.


Assuntos
Anti-Infecciosos , Cimenos , Listeria monocytogenes , Aço Inoxidável/análise , Biofilmes , Meios de Cultura , Microbiologia de Alimentos , Contagem de Colônia Microbiana
2.
Biofilm ; 4: 100094, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36467399

RESUMO

In food industries, microbial contaminations are difficult to control due to the recurrent formation of biofilms that hinders antimicrobials penetration and efficiency. An understanding of Salmonella Enteritidis biofilms behavior under flow conditions is a key to develop efficient preventive and control strategies. S. Enteritidis biofilms displayed 5.96, 6.28 and 6.80 log CFU cm-2 under 0.006 cm s-1, 0.045 cm s-1, and 0.087 cm s-1 flow velocities, respectively. Biofilms exposed to higher nutrient conditions under greater flow rates, induced significantly more biofilm biomass. To control biofilms, the disinfection efficiency of thymol (THY) was assessed under dynamic conditions by encapsulation it into two types of nanocapsules: monolayer (ML) nanocapsules prepared with a single carrier material (maltodextrin), and layer-by-layer (LBL) nanocapsules prepared by combining two carrier materials (maltodextrin and pectin). A combined mixture of ML and LBL nanocapsules at ½ their minimal inhibitory concentrations induced 99.99% eradication of biofilms developed under the highest flow conditions, after 5 h. ML nanocapsules decreased significantly bacterial counts during the first 0.5 h, while LBL nanocapsules eliminated the remaining bacterial cells and ensured a protection from bacterial contamination for up to 5 h by releasing THY in a sustained manner over time due to the thicker shell wall structure.

3.
Heliyon ; 8(12): e12472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590515

RESUMO

Microbial contaminations are responsible for many chronic, healthcare, persistent microbial infections and illnesses in the food sector, therefore their control is an important public health challenge. Over the past few years, essential oils (EOs) have emerged as interesting alternatives to synthetic antimicrobials as they are biodegradable, extracted from natural sources and potent antimicrobials. Through their multiple mechanisms of actions and target sites, no microbial resistance has been developed against them till present. Although extensive documentation has been reported on the antimicrobial activity of EOs, comparisons between the use of whole EOs or their active components alone for an antimicrobial treatment are less abundant. It is also essential to have a good knowledge about EOs to be used as alternatives to the conventional antimicrobial products such as chemical disinfectants. Moreover, it is important to focus not only on planktonic vegetative microorganisms, but to study also the effect on more resistant forms like spores and biofilms. The present article reviews the current knowledge on the mechanisms of antimicrobial activities of EOs and their active components on microorganisms in different forms. Additionally, in this review, the ultimate advantages of encapsulating EOs or combining them with other hurdles for enhanced antimicrobial treatments are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA